New ACP Letter: Modulation of the northern polar vortex by the Hunga Tonga–Hunga Ha'apai eruption and the associated surface response

27 March 2025

In January 2022, the Hunga Tonga–Hunga Ha'apai (HTHH) volcano erupted, sending massive amounts of water vapour into the atmosphere. This event had a significant impact on stratospheric and lower-mesospheric chemical composition. Two years later, stratospheric conditions were disturbed during so-called sudden stratospheric warmings. Here the authors simulate a novel pathway by which this water-rich eruption may have contributed to conditions during these events and consequently impacted the surface climate.

Executive editor's statement: The explosive Hunga Tonga eruption in 2022 had several characteristics that are unique in the recent observational record. Its effects on the atmosphere are of great scientific interest and have included rapidly propagating patterns of Lamb and gravity waves and long-lived anomalies in stratospheric water vapour. This modelling study demonstrates how, through a coupled sequence of chemical, radiative and dynamical mechanisms, the additional water vapour in the tropical upper stratosphere is likely to have had a significant effect on the wintertime circulation of the stratosphere and hence the troposphere in Northern Hemisphere mid- and high latitudes. These results on the fascinating Hunga Tonga event have wider relevance to perturbations of the climate system where the initial impact is stratospheric but important secondary effects are felt elsewhere, including at the surface.


Modulation of the northern polar vortex by the Hunga Tonga–Hunga Ha'apai eruption and the associated surface response
Ales Kuchar, Timofei Sukhodolov, Gabriel Chiodo, Andrin Jörimann, Jessica Kult-Herdin, Eugene Rozanov, and Harald H. Rieder
Atmos. Chem. Phys., 25, 3623–3634, https://doi.org/10.5194/acp-25-3623-2025, 2025

Contact: Ales Kuchar (ales.kuchar@boku.ac.at)